Assignment A2: Spatial Filtering CS 4640

$35.00

Category: Tags: , , , , , You will Instantly receive a download link for .zip solution file upon Payment || To Order Original Work Click Custom Order?

Description

5/5 - (5 votes)

For this problem, handin Matlab .m files for the functions described by the headers below. Note that one of these is a driver which creates inputs for each function and runs the
function on those inputs to obtain the output.
None of the functions should write to the interpreter, draw, etc.
function [mag,ori] = CS4640_edge(im)
% CS4640_edge – compute edge magnitudes and orientations
% On input:
% im (MxN array): input image
% On output:
% mag (MxN array): edge magnitudes
% ori (Mxn array): edge orientations (gradient direction)
% Call:
% [mag,ori] = CS4640_edge(im);
% Author:
%
% UU
% Spring 2018
%
function H_im = CS4630_Hessian(im)
% CS4640_Hessian – compute the eigenvalues of the Hessian at each
% pixel
% On input:
% im (MxN array): graylevel image
1
% On output:
% H_im (MxNx2 array): 2-channels with eigenvalues of Hessian
% Call:
% H = CS4640_Hessian(im);
% Author:
%
% UU
% Spring 2018
%
function imo = CS4640_median(im,s)
% CS4640_median – compute median value at each pixel
% On input:
% im (MxN array): input image
% s (int): median window side length (must be odd)
% On output:
% imo (MxN array): median filtered image
% Call:
% imo = CS4640_median(im);
% Author:
%
% UU
% Spring 2018
%
function im =
CS4640_create_im_gen(f_name,M,N,Q,x_min,x_max,y_min,y_max,…
args)
% CS4640_create_im_gen – create an image from a function with
% arguments
% On input:
% f_name (string): name of function
% M (int): number of rows in image
% N (int): number of cols in image
% Q (int): number of quantization levels in image
% x_min (float): min x value for planar patch
% x_max (float): max x value for planar patch
% y_min (float): min y value for planar patch
% y_max (float): max y value for planar patch
2
% args (1xq vector): arguments for function (in addition to x,y)
% On output:
% im (MxN array): image
% Call:
% im = CS4640_creat_im_gen(’CS4640_LoG’,100,100,64,-4,4,-4,4,2);
% Author:
%
% UU
% Spring 2018
%
function imo = CS4640_zc(im)
% CS4640_zc – zero crossings
% On input:
% im (MxN array): input image
% On output:
% imo (MxN array): zero crossings in image
% Call:
% imo = CS4640_zc(im);
% Author:
%
% UU
% Spring 2018
%
function h = CS4640_LoG(x,y,sigma2)
% CS4640_LoG – Laplacian of Gaussian function
% On input:
% x (double): x value
% y (double): y value
% sigma2 (double): variance of Gaussian
% On output:
% h (double): LoG value
% Call:
% h = CS4640_create_im_gen(3,2,2);
% Author:
%
% UU
% Spring 2018
%
3
function [imo,imzc] = CS4640_LapG(im,s,sigma2)
% CS4640_LapG – Laplacian of Gaussian
% On input:
% im (MxN array): input image
% s (int): side length of LoG filter
% sigma2 (double): variance of Gaussian filter
% On output:
% imo (MxN array): LoG image
% imzc (MxN arry): zero-crossings
% Call:
% [imo,imzc] = CS4640_LaG(T1gs,7,3);
% Author:
%
% UU
% Spring 2018
%
function CS4640_A2_driver
% CS4640_A2_driver – driver for A2 functions
% On input:
% N/A
% On output:
% N/A
% Call:
% CS4640_A2_driver
% Author:
%
% UU
% Spring 2018
%
4