Machine Learning ECE 4332 / ECE 5332 Project 3

$30.00

Category: Tags: , , , , You will Instantly receive a download link for .zip solution file upon Payment || To Order Original Work Click Custom Order?

Description

5/5 - (7 votes)

1. Generate the data set D as follows:
a. 𝐿𝐿 = 100
b. 𝑁𝑁 = 25
c. 𝑋𝑋 contains samples from a uniform distribution U(0,1).
d. 𝑑𝑑 = sin(2πœ‹πœ‹πœ‹πœ‹) + πœ€πœ€, where πœ€πœ€ contains samples from a Gaussian distribution
N(0, 𝜎𝜎 =0.3).
2. Select a set of permissible values for the regularization parameter πœ†πœ†.
3. For each value of πœ†πœ†, use the method of β€œlinear regression with non-linear models”
to fit Gaussian basis functions to each of the datasets. Use 𝑠𝑠 = 0.1.
4. Produce the plot as shown below, where
𝑓𝑓(Μ…π‘₯π‘₯) = 1
𝐿𝐿�𝑓𝑓(𝑙𝑙)
(π‘₯π‘₯)
𝐿𝐿
𝑙𝑙=1
(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)2 = 1
𝑁𝑁 ��𝑓𝑓̅
οΏ½π‘₯π‘₯(𝑛𝑛)
οΏ½ βˆ’ β„ŽοΏ½π‘₯π‘₯(𝑛𝑛)
οΏ½οΏ½
2
𝑁𝑁
𝑛𝑛=1
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 1
𝑁𝑁 οΏ½1
𝐿𝐿��𝑓𝑓(𝑙𝑙)
οΏ½π‘₯π‘₯(𝑛𝑛)
οΏ½ βˆ’ 𝑓𝑓̅
οΏ½π‘₯π‘₯(𝑛𝑛)
οΏ½οΏ½
2
𝐿𝐿
𝑙𝑙=1
𝑁𝑁
𝑛𝑛=1
5. The test error curve is the average error for a test data set of 1000 points.
Upload your .m or .py file to Blackboard prior to the deadline.
Name your files as Lastname_Firstname_Project3.*