Description
1 Playing with the NLM (0 pts)
You can use the NLM to evaluate the probability of a given sequence:
>>> NLM.load(‘large’) # load neural model from file; choose ‘base’, ‘large’, or ‘huge’
>>> h = NLM() # initialize a state (and observing )
>>> p = 1
>>> for c in ‘t h e _ e n d _ ‘.split():
>>> print(p, h) # cumulative prob and current state (and the distribution of the next char)
>>> p *= h.next_prob(c) # include prob (c | …)
>>> h += c # observe another character (changing NLM state internally)
1.000 ““: [t: 0.19, i: 0.10, a: 0.09, m: 0.07, s: 0.06, h: 0.06, c: 0.05, b: 0.04, p: 0.04, f: 0.04, r: 0.03, o: 0.03, d: 0.03, w: 0.03, e: 0.03, n: 0.03, l: 0.02, k: 0.02, g: 0.02, j: 0.01]
0.189 “ t”: [h: 0.82, o: 0.09, r: 0.03, e: 0.02, i: 0.01, w: 0.01]
1
0.156 “ t h”: [e: 0.88, i: 0.07, a: 0.02, r: 0.01]
0.138 “ t h e”: [_: 0.88, y: 0.04, r: 0.03, s: 0.01]
0.121 “ t h e _”: [s: 0.13, c: 0.09, f: 0.08, t: 0.07, p: 0.06, a: 0.05, m: 0.05, r: 0.05, b: 0.05, n: 0.04, w: 0.04, g: 0.04, l: 0.04, e: 0.04, d: 0.03, i: 0.03, h: 0.03, o: 0.03, u: 0.01, v: 0.01]
0.004 “ t h e _ e”: [n: 0.24, a: 0.13, x: 0.11, v: 0.08, p: 0.07, r: 0.05, l: 0.05, m: 0.04, s: 0.04, u: 0.03, f: 0.03, i: 0.02, c: 0.02, d: 0.02, g: 0.01, t: 0.01]
0.001 “ t h e _ e n”: [d: 0.41, g: 0.23, t: 0.18, v: 0.03, c: 0.03, o: 0.02, e: 0.01, r: 0.01]
0.000 “ t h e _ e n d”: [_: 0.84, : 0.05, i: 0.05, e: 0.02, s: 0.02]
You can also use the NLM to greedily generate (i.e., always choose the most likely next character):
>>> NLM.load(“large”)
>>> h = NLM()
>>> for i in range(100):
>>> c, p = max(h.next_prob().items(), key=lambda x: x[1])
>>> print(c, “%.2f <- p(%s | … %s)” % (p, c, ” “.join(map(str, h.history[-4:])))) >>> h += c
You get something like:
t 0.19 <- p(t | … )
h 0.82 <- p(h | … t)
e 0.88 <- p(e | … t h)
_ 0.88 <- p(_ | … t h e)
s 0.13 <- p(s | … t h e _)
e 0.18 <- p(e | … h e _ s)
c 0.31 <- p(c | … e _ s e)
o 0.88 <- p(o | … _ s e c)
n 1.00 <- p(n | … s e c o)
d 1.00 <- p(d | … e c o n)
_ 0.97 <- p(_ | … c o n d)
s 0.13 <- p(s | … o n d _)
e 0.22 <- p(e | … n d _ s)
a 0.30 <- p(a | … d _ s e)
s 0.82 <- p(s | … _ s e a)
o 0.99 <- p(o | … s e a s)
n 1.00 <- p(n | … e a s o)
_ 0.88 <- p(_ | … a s o n)
o 0.21 <- p(o | … s o n _)
f 0.92 <- p(f | … o n _ o)
_ 0.98 <- p(_ | … n _ o f)
t 0.28 <- p(t | … _ o f _)
h 0.90 <- p(h | … o f _ t)
e 0.94 <- p(e | … f _ t h)
_ 0.96 <- p(_ | … _ t h e)
s 0.12 <- p(s | … t h e _)
e 0.18 <- p(e | … h e _ s)
c 0.26 <- p(c | … e _ s e)
o 0.86 <- p(o | … _ s e c)
n 1.00 <- p(n | … s e c o)
d 1.00 <- p(d | … e c o n)
_ 0.94 <- p(_ | … c o n d)
s 0.13 <- p(s | … o n d _)
e 0.21 <- p(e | … n d _ s)
a 0.29 <- p(a | … d _ s e)
s 0.81 <- p(s | … _ s e a)
o 0.99 <- p(o | … s e a s)
n 1.00 <- p(n | … e a s o)
_ 0.87 <- p(_ | … a s o n)
o 0.18 <- p(o | … s o n _)
f 0.89 <- p(f | … o n _ o)
_ 0.98 <- p(_ | … n _ o f)
t 0.28 <- p(t | … _ o f _)
h 0.90 <- p(h | … o f _ t)
e 0.94 <- p(e | … f _ t h)
_ 0.96 <- p(_ | … _ t h e)
s 0.12 <- p(s | … t h e _)
e 0.18 <- p(e | … h e _ s)
c 0.26 <- p(c | … e _ s e)
o 0.86 <- p(o | … _ s e c)
n 1.00 <- p(n | … s e c o)
d 1.00 <- p(d | … e c o n)
_ 0.94 <- p(_ | … c o n d)
s 0.13 <- p(s | … o n d _)
e 0.21 <- p(e | … n d _ s)
a 0.29 <- p(a | … d _ s e)
s 0.81 <- p(s | … _ s e a)
o 0.99 <- p(o | … s e a s)
n 1.00 <- p(n | … e a s o)
_ 0.87 <- p(_ | … a s o n)
o 0.18 <- p(o | … s o n _)
f 0.88 <- p(f | … o n _ o)
_ 0.98 <- p(_ | … n _ o f)
t 0.28 <- p(t | … _ o f _)
2 Evaluating Entropy (2 pts)
1. Like EX2, please first evaluate the trigram entropies (base and large) on EX2 test.txt
2
cat | sed -e ‘s/ /_/g;s/\(.\)/\1 /g’ | awk ‘{printf(“ %s \n”, $0)}’ \
| carmel -sribI
Hint: both should be around 2.9.
Q: Is the large version intuitively better than the small version? If so, why? If not, why?
2. Now write a short program to evaluate the entropy of NLMs on the same test.txt.
Hint: they should be around 2.6 and 2.0, respectively.
Q: Which version (base or large) is better? Why?
3. Is NLM better than trigram in terms of entropy? Does it make sense?
3 Random Generation (2 pts)
1. Random generation from n-gram models.
Use carmel -GI 10 to stochastically generate character sequences. Show the results.
Do these results make sense?
2. Write a short code to randomly generate 10 sentences (from to ) from NLMs.
Hint: use random.choices() to draw the random sample from a distribution.
3. Compare the results between NLMs and trigrams.
4 Restoring Spaces (4 pts)
1. Recall from EX2 that you can use LMs to recover spaces:
therestcanbeatotalmessandyoucanstillreaditwithoutaproblem
thisisbecausethehumanminddoesnotreadeveryletterbyitselfbutthewordasawhole.
First, redo the trigram experiments using our provided trigrams, and using Carmel.
What are the precisions, recalls, and F-scores? (use eval_space.py).
Hint: F-scores should be around 61% and 64%, respectively.
2. Then design an algorithm to recover spaces using NLMs. Note: you can’t use dynamic programming
any more due to the infinite history that NLM remembers. You can use beam search instead.
Describe your algorithm in English and pseudocode, and analyze the complexity.
3. Implement it, and report the precisions, recalls, and F-scores.
Hint: F-scores should be ∼81% and ∼94% using beam size of 20 (and 100% using the ’huge’ model).
5 Restoring vowels (4 pts)
1. Redo trigram vowel recovery and report the accuracy. (use eval_vowels.py)
Hint: should be around 37% 42% and 33% 41%.
2. Now design an algorithm to recover spaces using NLMs.
Describe your algorithm in English and pseudocode, and analyze the complexity.
3. Implement it, and report the precisions, recalls, and F-scores.
Hint: should be around 50% 54% and 77% 80% using beam size of 40. If you use the ’huge’ NLM, it
will be around 93% (it might be slow to run).
6 Cancelled: Extra Credit: Decipherment with Neural LM (5 pts)